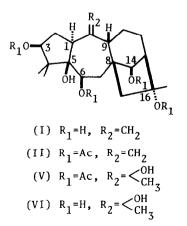
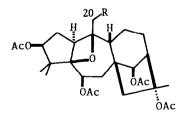
STEREOCHEMISTRY OF GRAYANOTOXIN-11

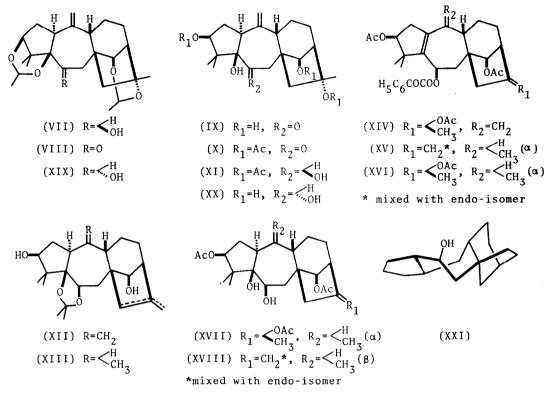

Zenzaburo Kumazawa and Ryozo Iriye


Department of Agricultural Chemistry, Mie University, Tsu-shi, Mie-ken, Japan (Received in Japan 7 January 1970; received in UK for publication 10 February 1970)

Grayanotoxin-II (abbreviated to G-II) has eight asymmetric centers as shown in I (1). The configurations shown there were assigned to those at C_8 , C_9 , C_{14} and C_{16} (2) and also to those at C_1 and C_3 , while α -configuration was proposed for both C_5 - and C_6 -hydroxyl groups (3). Kakisawa (4), Tallent (5) and Matsumoto (6) presented independently the configurations shown in I except that all of them assigned β -configuration to C_1 -hydrogen.

In this paper chemical evidences are reported that establish the stereochemistry of C_1 , C_5 and C_6 leading to an entire structure(I) for G-II.

Tetraacetyl G-II(II) (7) was treated with one mole of N-bromosuccinimide in dry acetone (8) to give a bromo compound(III) in 80% yield, mp 129°(decomp.), $C_{28}H_{39}O_9Br$, and on catalytic hydrogenolysis, this afforded a debrominated compound(IV), mp 200.5°(decomp.), $C_{28}H_{40}O_9$; both III and IV exhibited no hydroxyl absorption in the IR spectra. An AB type quartet observed in the NMR spectrum


(III) R=Br

(IV) R=H

of the bromo compound(III) at $\delta(CDCl_3)$ 3.32 and 4.40(J=11 cps) was attributed to the 20-bromomethyl group because the debrominated compound(IV) exhibited a threeproton singlet at $\delta(CDCl_3)$ 1.32 instead of the AB type signal. The compound(IV) gave back tetraacetyl G-II(II) when exposed to a hot acetic acid solution of zinc acetate, and also tetraacetyl G-III(V) together with II in the presence of additional water. This implies the first successful conversion of G-II(I) into G-III(VI), a hydrolysate of V (7). The compound(IV), which thus retains stereochemistry consistent with G-II(I), can be concluded to have a four-membered ether ring fused to ring A. Since such a 4/5 ring system never exists in a trans type, the A/B ring juncture is determined as trans (9). This conclusion is in agreement with that reported by Iwasa who obtained 5,9-oxa compound (5/5 ring system) by the treatment of G-II(I) with mercuric acetate (10).

On treatment with diethylacetal, G-II(I) gave a diacetal(VII), mp 198°, $C_{24}H_{36}O_5$; this regenerated G-II(I) on hydrolysis with acetic acid-water. Sarett oxidation of the diacetal(VII) to a ketone(VIII), mp 183° , $C_{24}H_{34}O_5$, followed by hydrolysis with acetic acid-water to a ketol(IX), mp 206°, $C_{20}H_{30}O_5$, and by the ultimate acetylation, produced a triacetylketone(X), mp 163°, C₂₆H₃₆O₈. A specimen identical with X was also obtained from tetraacetyl G-II(II) by partial ammonolysis to give a triacetate(XI), mp 162.5°, $C_{26}H_{38}O_8$, followed by Sarett Since the triacetate(XI) consumed one mole of lead tetraacetate, it oxydation. retains a secondary hydroxyl group on C_6 . From the data above, the diacetal(VII) should have a free hydroxyl group at C6, accordingly one of the acetal groups between C_3 and C_5 and another between C_{14} and C_{16} . The C_5 -hydroxyl group, thus being cis to 3β -hydroxyl group, can be determined as β -oriented and accordingly the C_1 -hydrogen as α (9); the latter allotment is in accord with the previous one The $C_6\text{-hydroxy1}$ group is then settled as $\beta\text{-oriented}$ since Dreiding models (3). show that only cis type α -glycol can be transformed into ketals, e.g., XII and XIII (1), under such a stereochemical situation at C_1 and C_5 settled above.

An earlier application of Prelog's asymmetric synthesis to phenylglyoxyl ester(XIV) had produced dextrorotatory atrolactic acid (Table 1), and consequently α -configuration was proposed for both C₆- and C₅-hydroxyl groups (3). Further examination of the same method revealed, however, that just a low optical yield

Table 1

Prelog's Method			Holeau's Method		
Compound	Yield ^a	Sign and Op- tical Yield ^a	Compound	Yield ^b	Sign and Op- tical Yield ^c
XIV	69.5%	+7.9%	VII	72.4% 81.9	0 % 0
XV XVI	71.0 65.5	+2.2	XI	86.4 83.4	+2.0 +2.1
a; of atrolactic acid b; of esterification			XVII	83.9 91.0	+2.9 +3.6
c; of a-phenylbutyric acid			XVIII	81.6	+2.5
			XIX	66.1 65.3	-11.2 -12.1

could be obtained from compound(XV), mp 118°(decomp.), $C_{32}H_{38}O_7$, and even the sign of rotation was inverted in case of compound(XVI), mp 139°, $C_{34}H_{42}O_9$ (Table 1). Similar ambiguity in the determination of the C_6 -configuration resulted when

Horeau's method was applied to diacetal (VII), triacetyl G-II(XI), dihydro-XI (XVII), mp 193°, C₂₆H₄₀O₈, and anhydrodihydrodiacety1 G-II(XVIII), mp 149°, The optical yield of α -phenylbutyric acid was always low or zero as $C_{24}H_{36}O_{6}$. the case of VII (Table 1). Such an anomalous behavior of VII may be ascribable to the conformation of ring B. The C₆-proton of VII showed such small NMR coupling constants (J=2.4 and 4.8 cps) that it must lie inside the C7-gem-protons (11). Since this demands that the B ring takes a boat form(XXI), both the C_0 and C_{15} -moieties come close to the 6 β -hydroxyl group and counterbalance the atomic crowding of C_A -moiety. Supporting this point of view, 6-epi-diacetal(XIX) gave a proper sign of rotation in a higher optical yield (Table 1). The epimer (XIX) was prepared either by the reduction of the ketone(VIII) with lithium aluminum hydride or by the same reduction of the triacetylketone(X) to 6-epi-G-II (XX), mp 201°, $C_{20}H_{32}O_5$, followed by acetal formation, mp 152°, $C_{24}H_{36}O_5$.

<u>Acknowledgements</u>: We wish to thank Prof. T. Mitsui(Kyoto University) for elemental analyses and Dr. T. Shingu(Kyoto University) and Dr. T. Ohtake(Nichiden-Varian Inc.) for NMR measurements.

References

- (1) J.Iwasa, Z.Kumazawa and M.Nakajima, Agr. Biol. Chem. (Tokyo), 25, 782, 793, 798 (1961); Chem. and Ind., 1961, 511
- (2) Z.Kumazawa, M.Nakajima and J.Iwasa, Abstracts, the Symposium on the Organic Chemistry of Natural Products, Sendai, Japan, 9 (1961)
- (3) Z.Kumazawa and R.Iriye, Abstracts, the I.U.P.A.C. Symposium on Natural Products, Kyoto, Japan, 43 (1964)
- (4) H.Kakisawa, T.Kojima, M.Yanai and K.Nakanishi, <u>Tetrahedron</u>, <u>21</u>, 3091 (1965); <u>Tetrahedron Letters</u>, 215 (1962); <u>ibid</u>, 1329 (1964)
- (5) W.H.Tallent, <u>J. Org. Chem.</u>, <u>27</u>, 2968 (1962)
- (6) T.Matsumoto and M.Watanabe, Tetrahedron Letters, 6019 (1968)
- (7) S.Miyajima and S.Takei, <u>J. Agr. Chem. Soc. Japan</u>, <u>12</u>, 497 (1936)
- (8) H.O.House, "Modern Synthetic Reactions", W.A.Benjamin Inc., New York, 1965, p 139
- (9) Z.Kumazawa and R.Iriye, Abstracts, the Annual Meeting of the Agricultural Chemical Society of Japan, Tokyo, 137 (1969)
- (10) J.Iwasa and Y.Nakamura, Tetrahedron Letters, 3973 (1969)
- (11) R.J.Abraham and J.S.E.Holker, J. Chem. Soc., 1963, 806